B.1 / BOOLEAN ALGEBRA 701

The operation of the digital computer is based on the storage and processing of
binary data. Throughout this book, we have assumed the existence of storage
elements that can-exist in one of two stable states and of circuits than can operate
on binary data under the control of control signals to implement the various com-
puter functions. In this appendix, we suggest how these storage elements and circuits
can be implemented in digital logic, specifically with combinational and sequential
circuits. The appendix begins with a brief review of Boolean algebra, which is the
mathematical foundation of digital logic. Next, the concept of a gate is introduced.
Finally, combinational and sequential circuits, which are constructed from gates,
are described.

B.1 BOOLEAN ALGEBRA

The digital circuitry in digital computers and other digital systems is designed, and
its behavior is analyzed, with the use of a mathematical discipline known as Boolean
algebra. The name is in honor of an English mathematician George Boole, who pro-
posed the basic principles of this algebra in 1854 in his treatise, An Investigation of
the Laws of Thought on Which to Found the Mathematical Theories of Logic and
Probabilities. In 1938, Claude Shannon, a research assistant in the Electrical Engi-
neering Department at M.I.T., suggested that Boolean algebra could be used to
solve problems in relay-switching circuit design [SHAN38]. Shannon’s techniques
were subsequently used in the analysis and design of electronic digital circuits.
Boolean algebra turns out to be a convenient tool in two areas:

¢ Analysis: It is an economical way of describing the function of digital circuitry.

¢ Design: Given a desired function, Boolean algebra can be applied to develop
a simplified implementation of that function.

As with any algebra, Boolean algebra makes use of variables and operations.
In this case, the variables and operations are logical variables and operations. Thus,
a variable may take on the value 1 (TRUE) or 0 (FALSE). The basic logical opera-
tions are AND, OR, and NOT, which are symbolically represented by dot, plus sign,
and overbar:

AANDB = A-B
AORB=A+B
NOTA =A
The operation AND yields true (binary value 1) if and only if both of its operands are

true. The operation OR yields true if either or both of its operands are true. The unary
operation NOT inverts the value of its operand. For example, consider the equation

D=A+ (B:C)

Disequal to1if Ais1orif both B = 0 and C = 1. Otherwise D is equal to 0.
Several points concerning the notation are needed. In the absence of paren-
theses, the AND operation takes precedence over the OR operation. Also, when no

702 APPENDIX B / DIGITAL LOGIC

Table B.1 Boolean Operators

ambiguity will occur, the AND operation is represented by simple concatenation
instead of the dot operator. Thus,

A+B:-C=A+ (B-C)=A +BC

all mean: Take the AND of B and C; then take the OR of the result and A.

Table B.1 defines the basic logical operations in a form known as a truth table,
which simply lists the value of an operation for every possible combination of values
of operands. The table also lists three other useful operators: XOR, NAND, and
NOR. The exclusive-or (XOR) of two logical operands is 1 if and only if exactly one
of the operands has the value 1. The NAND function is the complement (NOT) of
the AND function, and the NOR is the complement of OR:

ANAND B = NOT(A AND B) = AB
ANORB = NOT(AORB) =A + B

As we shall see, these three new operations can be useful in implementing certain
digital circuits.

Table B.2 summarizes key identities of Boolean algebra. The equations have
been arranged in two columns to show the complementary, or dual, nature of the
AND and OR operations. There are two classes of identities: basic rules (or
postulates), which are stated without proof, and other identities that can be derived
from the basic postulates. The postulates define the way in which Boolean expressions

Table B.2 Basic Identities of Boolean Algebra

B.2 / GATES 703

are interpreted. One of the two distributive laws is worth noting because it differs
from what we would find in ordinary algebra:

A+ (B-C)=(A+B)-(A+C)

The two bottommost expressions are referred to as DeMorgan’s theorem. We can
restate them as follows:

ANORB = A ANDB
ANANDB = AORB

The reader is invited to verify the expressions in Table B.2 by substituting actual
values (1s and 0s) for the variables A, B, and C.

B.2 GATES

The fundamental building block of all digital logic circuits is the gate. Logical func-
tions are implemented by the interconnection of gates.

A gate is an electronic circuit that produces an output signal that is a simple
Boolean operation on its input signals. The basic gates used in digital logic are AND,
OR,NOT,NAND, and NOR. Figure B.1 depicts these five gates. Each gate is defined
in three ways: graphic symbol, algebraic notation, and truth table. The symbology
used here and throughout the appendix is the IEEE standard, IEEE Std 91. Note
that the inversion (NOT) operation is indicated by a circle.

Each gate has one or two inputs and one output. When the values at the input
are changed, the correct output signal appears almost instantaneously, delayed only
by the propagation time of signals through the gate (known as the gate delay). The
significance of this is discussed in Section B.3.

In addition to the gates depicted in Figure B.1, gates with three, four, or more
inputs can be used. Thus, X + Y + Z can be implemented with a single OR gate
with three inputs.

Typically, not all gate types are used in implementation. Design and fabrica-
tion are simpler if only one or two types of gates are used. Thus, it is important to
identify functionally complete sets of gates. This means that any Boolean function
can be implemented using only the gates in the set. The following are functionally
complete sets:

* AND, OR,NOT
AND,NOT
OR,NOT
NAND

* NOR

It should be clear that AND, OR, and NOT gates constitute a functionally
complete set, because they represent the three operations of Boolean algebra. For
the AND and NOT gates to form a functionally complete set, there must be a way to

704 APPENDIX B / DIGITAL LOGIC

Algebraic
Name Graphic Symbol Function Truth Table
AB|F
A —1 F=A+B 00]0
S e D= R I
F=AB 11
AB|F
0010
A - 011
F=A+B
OR B:D—F 101
1111
F=A AlF
01
or
NOT A—>o—F N o
AB|F
A — 0ot
F F = (AB) 011
1071
1110
AB|F
00]1
A = 01(0
F=(A+B)
NOR B:DO—F Lolo
I1io

Figure B.1 Basic Logic Gates

synthesize the OR operation from the AND and NOT operations. This can be done
by applying DeMorgan’s theorem:

A+B=A-B
A OR B = NOT((NOT A)AND(NOT B))

Similarly, the OR and NOT operations are functionally complete because they can
be used to synthesize the AND operation.

Figure B.2 shows how the AND, OR, and NOT functions can be implemented
solely with NAND gates, and Figure B.3 shows the same thing for NOR gates. For this
reason, digital circuits can be, and frequently are, implemented solely with NAND
gates or solely with NOR gates.

With gates, we have reached the most primitive circuit level of computer
hardware. An examination of the transistor combinations used to construct gates
departs from that realm and enters the realm of electrical engineering. For our
purposes, however, we are content to describe how gates can be used as building
blocks to implement the essential logical circuits of a digital computer.

B.3 / COMBINATIONAL CIRCUITS 705

Aj A+B }A.B
—D——
O——

]
Figure B.2 The Use of NAND Gates

A
i)o————{(A+B) ' »— A +B
B

Figure B.3 The Use of NOR Gates

B.3 COMBINATIONAL CIRCUITS

A combinational circuit is an interconnected set of gates whose output at any time is a
function only of the input at that time. As with a single gate, the appearance of the input
is followed almost immediately by the appearance of the output, with only gate delays.

In general terms, a combinational circuit consists of n binary inputs and m binary
outputs. As with a gate, a combinational circuit can be defined in three ways:

o Truth table: For each of the 2" possible combinations of input signals, the
binary value of each of the m output signals is listed.

o Graphical symbols: The interconnected layout of gates is depicted.

706 APPENDIX B / DIGITAL LOGIC

* Boolean equations: Each output signal is expressed as a Boolean function of
its input signals.

Implementation of Boolean Functions

Any Boolean function can be implemented in electronic form as a network of gates.
For any given function, there are a number of alternative realizations. Consider the
Boolean function represented by the truth table in Table B.3. We can express this func-
tion by simply itemizing the combinations of values of A, B, and C that cause F to be 1:

F = ABC + ABC + ABC (B.1)

There are three combinations of input values that cause F to be 1, and if any one
of these combinations occurs, the result is 1. This form of expression, for self-evident
reasons, is known as the sum of products (SOP) form. Figure B.4 shows a straight-
forward implementation with AND, OR, and NOT gates.

Another form can also be derived from the truth table. The SOP form expresses
that the output is 1 if any of the input combinations that produce 1 is true. We can also
say that the output is 1 if none of the input combinations that produce 0 is true. Thus,

F=(ABC)-(ABC)-(ABC)-(ABC)-(ABC)
This can be rewritten using a generalization of DeMorgan’s theorem:

XY'Z)=X+Y+7Z

Thus,
F=(K+§+E)-(7+§+6)-(K+§+ﬁ)-(x+§+C)-(K+§+C)
=(A+B+C)'(A+B+C):(A+B+C):(A+B+C)-(A+B+C) (B2)
A B c
—
L/
— |
| >
RY
L/

Figure B.4 Sum-of-Products Implementation of Table A.3

B.3 / COMBINATIONAL CIRCUITS 707

(@] d

5080
’

Olw >

(@1 gl

@ --kg]

Figure B.5 Product-of-Sums Implementation
of Table A.3

This is in the product of sums (POS) form, which is illustrated in Figure B.5. For clar-
ity, NOT gates are not shown. Rather, it is assumed that each input signal and its
complement are available. This simplifies the logic diagram and makes the inputs to
the gates more readily apparent.

Thus, a Boolean function can be realized in either SOP or POS form. At this
point, it would seem that the choice would depend on whether the truth table con-
tains more 1s or 0s for the output function: The SOP has one term for each 1, and the
POS has one term for each 0. However, there are other considerations:

e Itis often possible to derive a simpler Boolean expression from the truth table
than either SOP or POS.

» It may be preferable to implement the function with a single gate type (NAND
or NOR). .

The significance of the first point is that, with a simpler Boolean expression,
fewer gates will be needed to implement the function. Three methods that can be
used to achieve simplification are

* Algebraic simplification
e Karnaugh maps
¢ Quine-McKluskey tables

Algebraic Simplification Algebraic simplification involves the application of the
identities of Table B.2 to reduce the Boolean expression to one with fewer elements.

708 APPENDIX B / DIGITAL LOGIC

—1 >
]

Figure B.6 Simplified Implementation
of Table A.3

al >

For example, consider again Equation (B.1). Some thought should convince the reader
that an equivalent expression is

F = AB + BC (B.3)
Or, even simpler,
F = B(A + C)

This expression can be implemented as shown in Figure B.6. The simplification of
Equation (B.1) was done essentially by observation. For more complex expressions,
some more systematic approach is needed.

Karnaugh Maps For purposes of simplification, the Karnaugh map is a conve-
nient way of representing a Boolean function of a small number (up to four) of vari-
ables. The map is an array of 2" squares, representing all possible combinations of
values of n binary variables. Figure B.7a shows the map of four squares for a func-
tion of two variables. It is essential for later purposes to list the combinations in the
order 00, 01, 11, 10. Because the squares corresponding to the combinations are to

AB o }B
|
\./Y‘\J

(c) F = ABCD + ABCD + ABCD D

(d) Simplified Labeling of Map

Figure B.7 The Use of Karnaugh Maps to Represent Boolean Functions

B.3 / COMBINATIONAL CIRCUITS 709

Table B.3 A Boolean Function of Three Variables

A B c F
0 0 0 04
0 0 1 0 MANGALORE
0 1 0 1\ 575 G91.
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

be used for recording information, the combinations are customarily written above
the squares. In the case of three variables, the representation is an arrangement of
eight squares (Figure B.7b), with the values for one of the variables to the left and
for the other two variables above the squares. For four variables, 16 squares are
needed, with the arrangement indicated in Figure B.7c.

The map can be used to represent any Boolean function in the following
way. Each square corresponds to a unique product in the sum-of-products form,
with a 1 value corresponding to the variable and a 0 value corresponding to the
NOT of that variable. Thus, the product AB corresponds to the fourth square in
Figure B.7a. For each such product in the function, 1 is placed in the correspond-
ing square. Thus, for the two-variable example, the map corresponds to AB + AB.
Given the truth table of a Boolean function, it is an easy matter to construct the
map: For each combination of values of variables that produce a result of 1 in the
truth table, fill in the corresponding square of the map with 1. Figure B.7b shows
the result for the truth table of Table B.3. To convert from a Boolean expression
to a map, it is first necessary to put the expression into what is referred to as
canonical form: Each term in the expression must contain each variable. So, for
example, if we have Equation (B.3), we must first expand it into the full form of
Equation (B.1) and then convert this to a map.

The labeling used in Figure B.7d emphasizes the relationship between vari-
ables and the rows and columns of the map. Here the two rows embraced by the
symbol A are those in which the variable A has the value 1; the rows not embraced
by the symbol A are those in which A is 0; similarly for B, C, and D.

Once the map of a function is created, we can often write a simple algebraic
expression for it by noting the arrangement of the 1s on the map. The principle is as
follows. Any two squares that are adjacent differ in only one of the variables. If two
adjacent squares both have an entry of one, then the corresponding product terms
differ in only one variable. In such a case, the two terms can be merged by eliminat-
ing that variable. For example, in Figure B.8a, the two adjacent squares correspond
to the two terms ABCD and ABCD. Thus, the function expressed is

ABCD + ABCD = ABD

This process can be extended in several ways. First, the concept of adjacency
can be extended to include wrapping around the edge of the map. Thus, the top
square of a column is adjacent to the bottom square, and the leftmost square of

710 APPENDIX B / DIGITAL LOGIC

CD CD CD
00 o1 11 10 00 01 1t 10 00 ol 11 10

01 (1 1) 01 01 1 1

AB AB AB -
11 11 1
10 10 ’ 1 \ 10
(a) ABD (b) BCD (b) ABD
cD CcD CD
00 Ot It 10 00 01 11 10 00 0l 1 10

01 01

(— -
1 1 01 1
AB AB AB
11 11 I 11_ 1 ‘

-1

10 10 10
(d)AB (e) BC (f) BD
CcD CcD CcD
00 01 11 10 00 01 11 10 00 01 11 10
. _ _ —
ool 1] 1]1 1] 0|1 /1 00 1|1
o1 |! 1 1 IJ 01| 1 1 01 1 1
AB AB AB
11 I 1 11 1|1
10 0] 1 L 10 1]
®A (D MHC

Figure B.8 The Use of Karnaugh Maps

a row is adjacent to the rightmost square. These conditions are illustrated in
Figures B.8b and c. Second, we can group not just 2 squares but 2" adjacent
squares (that is, 4, 8, etc.). The next three examples in Figure B.8 show groupings
of 4 squares. Note that in this case, two of the variables can be eliminated. The
last three examples show groupings of 8 squares, which allow three variables to
be eliminated.

We can summarize the rules for simplification as follows:

1. Among the marked squares (squares with a 1), find those that belong to a
unique largest block of 1,2, 4, or 8 and circle those blocks.

2. Select additional blocks of marked squares that are as large as possible and as
few in number as possible, but include every marked square at least once. The
results may not be unique in some cases. For example, if a marked square

B.3 / COMBINATIONAL CIRCUITS 711

combines with exactly two other squares, and there is no fourth marked
square to complete a larger group, then there is a choice to be made as two
which of the two groupings to choose. When you are circling groups, you are
allowed to use the same 1 value more than once.

3. Continue to draw loops around single marked squares, or pairs of adjacent
marked squares, or groups of four, eight, and so on in such a way that every
marked square belongs to at least one loop; then use as few of these blocks as
possible to include all marked squares.

Figure B.9a, based on Table B.3, illustrates the simplification process. If any
isolated 1s remain after the groupings, then each of these is circled as a group of 1s.
Finally, before going from the map to a simplified Boolean expression, any group of
1s that is completely overlapped by other groups can be eliminated. This is shown in
Figure B.9b. In this case, the horizontal group is redundant and may be ignored in
creating the Boolean expression.

One additional feature of Karnaugh maps needs to be mentioned. In some
cases, certain combinations of values of variables never occur, and therefore the cor-
responding output never occurs. These are referred to as “don’t care” conditions.
For each such condition, the letter “d” is entered into the corresponding square of
the map. In doing the grouping and simplification, each “d” can be treated as a 1 or
0, whichever leads to the simplest expression.

An example, presented in [HAYE98], illustrates the points we have been
discussing. We would like to develop the Boolean expressions for a circuit
that adds 1 to a packed decimal digit. Recall from Section 9.2 that with packed
decimal, each decimal digit is represented by a 4-bit code, in the obvious way.

00 01 11 10

A
! \u/
(a) F = AB + BC
CcD
00 01 11 10
00
01 1
AB/{

11 ID
o T I

(b) F = BCD + ACD

Figure B9 Overlapping Groups

712 APPENDIX B / DIGITAL LOGIC

Table B.4 Truth Table for the One-Digit Packed Decimal Incrementer

VAT e ¥ lﬂp‘t : w
B c D . Number W X Y z
S0 Q. 0 1 Lo 0 0 1
0 S0 2 0 0 1 0
0 1 e 3 0 0 1 1
0 1 1 4 0 1 0 0
1 0 0 5 0 1 0 1
R T 6 o 1 1 0
1 1o 7 0 1 1 1
11 1 8 0 0 0
0. .0 o 9 1. 0 0 1
0 01 0 0 0. .0 0
s s i B d d d d
Qoo b e B, d d 4 d
Ll @ 0 d d .d d
gl Latsig d d d- d
G SRR A d d 4 d
1 1 1 d d. d d

Thus, 0 = 0000,1 = 0001,...,8 = 1000, and 9 = 1001. The remaining 4-bit val-
ues, from 1010 to 1111, are not used. This code is also referred to as Binary
Coded Decimal (BCD).

Table B.4 shows the truth table for producing a 4-bit result that is one more than
a 4-bit BCD input. The addition is modulo 10. Thus,9 + 1 = 0. Also, note that six of
the input codes produce “don’t care” results, because those are not valid BCD inputs.
Figure B.10 shows the resulting Karnaugh maps for each of the output variables. The d
squares are used to achieve the best possible groupings.

The Quine—McKluskey Method For more than four variables, the Karnaugh
map method becomes increasingly cumbersome. With five variables, two 16 X 16
maps are needed, with one map considered to be on top of the other in three di-
mensions to achieve adjacency. Six variables require the use of four 16 X 16 tables
in four dimensions! An alternative approach is a tabular technique, referred to as
the Quine-McKluskey method. The method is suitable for programming on a com-
puter to give an automatic tool for producing minimized Boolean expressions.

The method is best explained by means of an example. Consider the following
expression:

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Let us assume that this expression was derived from a truth table. We would like to
produce a minimal expression suitable for implementation with gates.

B.3 / COMBINATIONAL CIRCUITS 713

CDh CD
00 01 11 10 00 01,11, 10
00 00 1
AB %] @® ap 01 1 1
njidyd|did 1n\d d\d|
10| 1 d Q_ 10 d\ d
I 1
(a) W = AD + ABCD (b) X = BD + BC + BCD
CD CD
00 01 11 10 00 01 11 10
w| (1) | 00| 1 1]
AB 01 1 1 AB oi1{ 1 1
1n|d{d|d|d 1ijdffd|d|d
10 d|d 10| 1) di\d|
(c)Y = ACD + ACD dZ=D

Figure B.10 Karnaugh Maps for the Incrementer

The first step is to construct a table in which each row corresponds to one of the
product terms of the expression. The terms are grouped according to the number
of complemented variables. That is, we start with the term with no complements, if it
exists, then all terms with one complement, and so on. Table B.5 shows the list for our
example expression, with horizontal lines used to indicate the grouping. For clarity,
each term is represented by a 1 for each uncomplemented variable and a 0 for each
complemented variable. Thus, we group terms according to the number of 1s they con-
tain. The index column is simply the decimal equivalent and is useful in what follows.

The next step is to find all pairs of terms that differ in only one variable, that is,
all pairs of terms that are the same except that one variable is 0 in one of the terms
and 1 in the other. Because of the way in which we have grouped the terms, we can

Table B.5 First Stage of Quine-McKluskey Method
(for F = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD)

714 APPENDIX B / DIGITAL LOGIC

do this by starting with the first group and comparing each term of the first group
with every term of the second group. Then compare each term of the second group
with all of the terms of the third group, and so on. Whenever a match is found, place
a check next to each term, combine the pair by eliminating the variable that differs
in the two terms, and add that to a new list. Thus, for example, the terms ABCD and
ABCD are combined to produce ABC. This process continues until the entire origi-
nal table has been examined. The result is a new table with the following entries:

ACD ABC ABD |

BCD, ACD
ABC BCD |
KBD VJ

The new table is organized into groups, as indicated, in the same fashion as the
first table. The second table is then processed in the same manner as the first. That is,
terms that differ in only one variable are checked and a new term produced for a third
table. In this example, the third table that is produced contains only one term: BD.

In general, the process would proceed through successive tables until a table
with no matches was produced. In this case, this has involved three tables.

Once the process just described is completed, we have eliminated many of
the possible terms of the expression. Those terms that have not been eliminated
are used to construct a matrix, as illustrated in Table B.6. Each row of the matrix
corresponds to one of the terms that have not been eliminated (has no check) in
any of the tables used so far. Each column corresponds to one of the terms in the
original expression. An X is placed at each intersection of a row and a column
such that the row element is “compatible” with the column element. That is, the
variables present in the row element have the same value as the variables present
in the column element. Next, circle each X that is alone in a column. Then place
a square around each X in any row in which there is a circled X. If every column
now has either a squared or a circled X, then we are done, and those row ele-
ments whose Xs have been marked constitute the minimal expression. Thus, in
our example, the final expression is

ABC + ACD + ABC + A CD
Table B.6 Last Stage of Quine-McKluskey Method
(for F = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + A B CD)
ABCD | ABCD | ABCD | ABCD | ABCD | ABCD
X X

[x] ®

d

>
=
Ql
=~/

®

x] | ®

B.3 / COMBINATIONAL CIRCUITS 715

In cases in which some columns have neither a circle nor a square, additional
processing is required. Essentially, we keep adding row elements until all columns are
covered.

Let us summarize the Quine-McKluskey method to try to justify intuitively why
it works. The first phase of the operation is reasonably straightforward. The process
eliminates unneeded variables in product terms. Thus, the expression ABC + ABC is
equivalent to AB, because

ABC + ABC = AB(C + C) = AB

After the elimination of variables, we are left with an expression that is clearly
equivalent to the original expression. However, there may be redundant terms in
this expression, just as we found redundant groupings in Karnaugh maps. The matrix
layout assures that each term in the original expression is covered and does so in a
way that minimizes the number of terms in the final expression.

NAND and NOR Implementations Another consideration in the imple-
mentation of Boolean functions concerns the types of gates used. It is often desir-
able to implement a Boolean function solely with NAND gates or solely with NOR
gates. Although this may not be the minimum-gate implementation, it has the
advantage of regularity, which can simplify the manufacturing process. Consider
again Equation (B.3):

F =B(A + C)
Because the complement of the complement of a value is just the original value,
F=B(A + C) = (AB) + (BO)
Applying DeMorgan’s theorem,
F = (AB)- (BC)
which has three NAND forms, as illustrated in Figure B.11.

Multiplexers

The multiplexer connects multiple inputs to a single output. At any time, one of the
inputs is selected to be passed to the output. A general block diagram representation

[
1

B —

T
—

¢ —

Figure B.11 NAND Implementation of
Table A.3

716 APPENDIX B / DIGITAL LOGIC

DO _
D1 4-to-1 -
D2 MUX
D3

S2 SI
Figure B.12 4-to-1 Multiplexer
Representation

is shown in Figure B.12. This represents a 4-to-1 multiplexer. There are four input
lines, labeled DO, D1,D2, and D3. One of these lines is selected to provide the output
signal F. To select one of the four possible inputs, a 2-bit selection code is needed, and
this is implemented as two select lines labeled S1 and S2.

An example 4-to-1 multiplexer is defined by the truth table in Table B.7.
This is a simplified form of a truth table. Instead of showing all possible combina-
tions of input variables, it shows the output as data from line DO, D1, D2, or D3.
Figure B.13 shows an implementation using AND, OR, and NOT gates. S1 and S2
are connected to the AND gates in such a way that, for any combination of S1 and
S2, three of the AND gates will output 0. The fourth AND gate will output the value
of the selected line, which is either 0 or 1. Thus, three of the inputs to the OR gate
are always 0, and the output of the OR gate will equal the value of the selected
input gate. Using this regular organization, it is easy to construct multiplexers.of size
8-to-1, 16-to-1, and so on.

Multiplexers are used in digital circuits to control signal and data routing. An
example is the loading of the program counter (PC). The value to be loaded into the
program counter may come from one of several different sources:

¢ A binary counter, if the PC is to be incremented for the next instruction

* The instruction register, if a branch instruction using a direct address has just
been executed

* The output of the ALU, if the branch instruction specifies the address using a
displacement mode

Table B.7 4-to-1 Multiplexer Truth Table

o

B.3 / COMBINATIONAL CIRCUITS 717

S2 Sl
v ¥
[
DO |/
‘ —
Dl
NS
R
D2 ./
[
D3 S

Figure B.13 Multiplexer Implementation

These various inputs could be connected to the input lines of a multiplexer, with the
PC connected to the output line. The select lines determine which value is loaded
into the PC. Because the PC contains multiple bits, multiple multiplexers are used,
one per bit. Figure B.14 illustrates this for 16-bit addresses.

Decoders

A decoder is a combinational circuit with a number of output lines, only one of
which is asserted at any time, dependent on the pattern of input lines. In general, a
decoder has n inputs and 2" outputs. Figure B.15 shows a decoder with three inputs
and eight outputs.

C, IRy ALU, C, IR, ALU, Cis IRys ALUs
82— 4101 $2— 4011 $2— 440-1
g — Mux g — MUx §1— MUX
PCy PC, PCys

Figure B.14 Multiplexer Input to Program Counter

718 APPENDIX B / DIGITAL LOGIC

; >),

b o N

c Do—1 —
),
BED
),
),

Figure B.15 Decoder with 3 Inputs and 2* = 8 Outputs

Decoders find many uses in digital computers. One example is address de-
coding. Suppose we wish to construct a 1K-byte memory using four 256 X 8-bit
RAM chips. We want a single unified address space, which can be broken down

as follows:
Address Chip
0000-00FF 0
0100-01FF 1
0200-02FF 2
0300-03FF 3

Each chip requires 8 address lines, and these are supplied by the lower-order 8
bits of the address. The higher-order 2 bits of the 10-bit address are used to select
one of the four RAM chips. For this purpose, a 2-to-4 decoder is used whose output
enables one of the four chips, as shown in Figure B.16.

With an additional input line, a decoder can be used as a demultiplexer. The
demultiplexer performs the inverse function of a multiplexer; it connects a single
input to one of several outputs. This is shown in Figure B.17. As before, n inputs
are decoded to produce a single one of 2" outputs. All of the 2” output lines are

B.3 / COMBINATIONAL CIRCUITS 719

A0
A7
L L -
256 X 8 256 X 8 256 X 8 256 X 8
RAM RAM RAM RAM

I-to-4 Enable Enable Enable Enable

Decoder
A8 —
A9 —

Figure B.16 Address Decoding

ANDed with a data input line. Thus, the n inputs act as an address to select a par-
ticular output line, and the value on the data input line (0 or 1) is routed to that
output line.

The configuration in Figure B.17 can be viewed in another way. Change the
label on the new line from Data Input to Enable. This allows for the control of the
timing of the decoder. The decoded output appears only when the encoded input is
present and the enable line has a value of 1.

Programmable Logic Array

Thus far, we have treated individual gates as building blocks, from which arbitrary
functions can be realized. The designer could pursue a strategy of minimizing the
number of gates to be used by manipulating the corresponding Boolean expressions.

As the level of integration provided by integrated circuits increases, other
considerations apply. Early integrated circuits, using small-scale integration (SSI),
provided from one to ten gates on a chip. Each gate is treated independently, in
the building-block approach described so far. Figure B.18 is an example of some
SSI chips. To construct a logic function, a number of these chips are laid out on a
printed circuit board and the appropriate pin interconnections are made.

L) [)

. . .
o :
estination

[] * N
address 2" outputs
. N-to-2" decoder ®
®
L)
L]
Data input

Figure B.17 Implementation of a Demultiplexer Using
a Decoder

720 APPENDIX B / DIGITAL LOGIC

7400
Vee 4B 4A 4Y 3B 3A 3Y

1411131 4124411}{10} {9 }{ 8

1 2 3171415 617
1A 1B 1Y 2A 2B 2Y GND

7408
Voe 4B 4A 4Y 3B 3A 3Y

14113 24114101+ 9 | 8
3714

=Y
D

1 e FsH4HAsHe 7
IA 1B 1Y 2A 2B 2Y GND
7422
Vee 2D 2C NC 2B 2A 2Y
14113112 10 {9

[
p—
- <]

o

L2345 Me e
1A 1B NC IC 1D 1Y GND
7432
Vee 4B 4A 4Y 3B 3A 3Y
il o s

1 2 37140515 617
1A 1B 1Y 2A 2B 2Y GND

Figure B.18 Some SSI Chips. Pin layouts from The TTL Data Book for Design Engineers
copyright © 1976 Texas Instrument Incorporated.

7404
Ve 6A 6Y S5A SY 4A 4Y
14413112

SESQN
il

— e s H4HsHe 7
IA 1Y 2A 2Y 3A 3Y GND
7411
Vee IC 1Y 3C 3B 3A 3Y
e nl o {18

e H3sH4HsHe 7
1A 1B 2A 2B 2C 2Y GND
7430
Vee NOC H G NC NC Y
o o} s

U

7486
Vee 4B 4A 4Y 3B 3A 3Y

14} 131412} 411} 41019 {4 8

][2 3}456[7

1A 1B 1Y 2A 2B 2Y GND

»

B.3 / COMBINATIONAL CIRCUITS 721

Increasing levels of integration made it possible to put more gates on a chip and
to make gate interconnections on the chip as well. This yields the advantages of de-
creased cost, decreased size, and increased speed (because on-chip delays are of short-
er duration than off-chip delays). A design problem arises, however. For each particular
logic function or set of functions, the layout of gates and interconnections on the chip
must be designed. The cost and time involved in such custom chip design is high. Thus,
it becomes attractive to develop a general-purpose chip that can be readily adapted to
specific purposes. This is the intent of the programmable logic array (PLA).

The PLA is based on the fact that any Boolean function (truth table) can be
expressed in a sum-of-products (SOP) form, as we have seen. The PLA consists of a
regular arrangement of NOT, AND, and OR gates on a chip. Each chip input is passed
through a NOT gate so that each input and its complement are available to each AND
gate. The output of each AND gate is available to each OR gate, and the output of
each OR gate is a chip output. By making the appropriate connections, arbitrary SOP
expressions can be implemented.

Figure B.19a shows a PLA with three inputs, eight gates, and two outputs. Most
larger PLAs contain several hundred gates, 15 to 25 inputs, and 5 to 15 outputs. The
connections from the inputs to the AND gates, and from the AND gates to the OR
gates, are not specified.

PLAs are manufactured in two different ways to allow easy programming
(making of connections). In the first, every possible connection is made through a fuse
at every intersection point. The undesired connections can then be later removed by
blowing the fuses. This type of PLA is referred to as a field-programmable logic array.
Alternatively, the proper connections can be made during chip fabrication by using an
appropriate mask supplied for a particular interconnection pattern. In either case, the
PLA provides a flexible, inexpensive way of implementing digital logic functions.

Figure B.19b shows a design that realizes two Boolean expressions.

Read-Only Memory

Combinational circuits are often referred to as “memoryless” circuits, because their
output depends only on their current input and no history of prior inputs is retained.
However, there is one sort of memory that is implemented with combinational circuits,
namely read-only memory (ROM).

Recall that a ROM is a memory unit that performs only the read operation. This
implies that the binary information stored in a ROM is permanent and was created
during the fabrication process. Thus, a given input to the ROM (address lines) always
produces the same output (data lines). Because the outputs are a function only of the
present inputs, the ROM is in fact a combinational circuit.

A ROM can be implemented with a decoder and a set of OR gates. As an
example, consider Table B.8. This can be viewed as a truth table with four inputs
and four outputs. For each of the 16 possible input values, the corresponding set of
values of the outputs is shown. It can also be viewed as defining the contents of a
64-bit ROM consisting of 16 words of 4 bits each. The four inputs specify an address,
and the four outputs specify the contents of the location specified by the address.
Figure B.20 shows how this memory could be implemented using a 4-to-16 decoder
and four OR gates. As with the PLA, a regular organization is used, and the inter-
connections are made to reflect the desired result.

722 APPENDIX B / DIGITAL LOGIC

A B C
1 2 3
- -
(a) Layout for three-input
two-output PLA Output | Output 2
A B C
} ABC
> AB
)
(b) Connection design for three-input Ouipu!l_ _()_‘_“Pm 2_
two-output PLA ABC+ AB AB + AC

Figure B.19 An Example of a Programmable Logic Array

B.3 7 COMBINATIONAL CIRCUITS

Table B.8 Truth Table fora ROM

X3—-
Xy ——

Four-input
sixteen-
output
decoder

0001

0010

0011

0100

0101

0110

o111

1000

1001

1010

1011

1100

1101

1110

T

Figure B.20

A 64-Bit ROM

Z, Z,

Zy

Z

723

726 APPENDIX B / DIGITAL LOGIC

If the carry values could be determined without having to ripple through all
the previous stages, then each single-bit adder could function independently, and
delay would not accumulate. This can be achieved with an approach known as carry
lookahead. Let us look again at the 4-bit adder to explain this approach.

We would like to come up with an expression that specifies the carry input to
any stage of the adder without reference to previous carry values. We have

Co = A¢By (B4)
Cl = AlBl + AIAOBO + B]A()BO (BS)
Following the same procedure, we get

C2 = A2B2 + AzA]Bl + AzAleBO + A2B1A0B0 + BZAlBl
+ B,AA(B, + B,B,A¢B,

This process can be repeated for arbitrarily long adders. Each carry term can be
expressed in SOP form as a function only of the original inputs, with no dependence
on the carries. Thus, only two levels of gate delay occur regardless of the length of
the adder.

For long numbers, this approach becomes excessively complicated. Evaluating
the expression for the most significant bit of an n-bit adder requires an OR gate
with n — 1 inputs and n AND gates with from 2 to n + 1 inputs. Accordingly, full
carry lookahead is typically done only 4 to 8 bits at a time. Figure B.23 shows how a
32-bit adder can be constructed out of four 8-bit adders. In this case, the carry must
ripple through the four 8-bit adders, but this will be substantially quicker than a rip-
ple through thirty-two 1-bit adders.

B.4 SEQUENTIAL CIRCUITS

Combinational circuits implement the essential functions of a digital computer.
However, except for the special case of ROM, they provide no memory or state in-
formation, elements also essential to the operation of a digital computer. For the lat-
ter purposes, a more complex form of digital logic circuit is used: the sequential
circuit. The current output of a sequential circuit depends not only on the current
input, but also on the past history of inputs. Another and generally more useful way
to view it is that the current output of a sequential circuit depends on the current
input and the current state of that circuit.

In this section, we examine some simple but useful examples of sequential cir-
cuits. As will be seen, the sequential circuit makes use of combinational circuits.

Flip-Flops

The simplest form of sequential circuit is the flip-flop. There are a variety of flip-
flops, all of which share two properties:

* The flip-flop is a bistable device. It exists in one of two states and, in the absence
of input, remains in that state. Thus, the flip-flop can function as a 1-bit memory.

* The flip-flop has two outputs, which are always the complements of each
other. These are generally labeled Q and Q.

B.4 / SEQUENTIAL CIRCUITS 727

The S—R Latch Figure B.24 shows a common configuration known as the S-R
flip-flop or S-R latch. The circuit has two inputs, S (Set) and R (Reset), and two out-
puts, Q and Q, and consists of two NOR gates connected in a feedback arrangement.

First, let us show that the circuit is bistable. Assume that both S and R are 0
and that Q is 0. The inputs to the lower NOR gate are Q = 0 and S = 0. Thus, the
output Q = 1 means that the inputs to the upper NOR gate are Q = 1 and R = 0,
which has the output Q = 0. Thus, the state of the circuit is internally consistent and
remains stable as long as S = R = 0. A similar line of reasoning shows that the state
Q=1,Q =0isalsostablefor R =S = 0.

Thus, this circuit can function as a 1-bit memory. We can view the output Q as the
“value” of the bit. The inputs S and R serve to write the values 1 and 0, respectively, into
memory. To see this, consider the state Q = 0, Q =1,S = 0,R = 0. Suppose that S
changes to the value 1. Now the inputs to the lower NOR gate are S = 1, Q = 0. After
some time delay At, the output of the lower NOR gate will be Q = 0 (see Figure B.25).

Ql

S

Figure B.24 The S-R Latch
Implemented with NOR Gates

S
0]
|
i
I
!
1 I
I
R I
|
|
0 : \ e
' :
! f —_—t
1 | h
—_ e« 2A¢ — fe—Ar
Q | I
| |
|
0 i ,
|)
| I
H |
1 ' l
_ -—»: le— At —pm| le— 2At
Q | !
]
0 ! '

Figure B.25 NOR S-R Latch timing Diagram

730 APPENDIX B / DIGITAL LOGIC

L

Clock ——¢

~
-/

[

—
J

Figure B.28 J-K Flip-Flop

. Characteristic
Name Graphic Symbol Table
S Q S R Qi+
0 0 Q.
S-R > Ck 0 1 0
1 0 1
R 6 | 1 I ~
—1 Q I K| Qu
0 0 Q.
3K —pCk 0 1 0
1 0 L
K 6 1 1 Qn
D Q D Qns
0 0
D > Ck 1 1
Q

Figure B.29 Basic Flip-Flops

Clock
Load

B.4 / SEQUENTIAL CIRCUITS 731

Thus,if Q is 1 and 1 is applied to J and K, then Q becomes 0. The reader should verify
that the implementation of Figure B.28 produces this characteristic function.

Registers

As an example of the use of flip-flops, let us first examine one of the essential ele-
ments of the CPU: the register. As we know, a register is a digital circuit used within
the CPU to store one or more bits of data. Two basic types of registers are common-
ly used: parallel registers and shift registers.

Parallel Registers A parallel register consists of a set of 1-bit memories that can
be read or written simultaneously. It is used to store data. The registers that we have
discussed throughout this book are parallel registers.

The 8-bit register of Figure B.30 illustrates the operation of a parallel register
using D flip-flops. A control signal, labeled load, controls writing into the register
from signal lines, D11 through D18. These lines might be the output of multiplexers,
so that data from a variety of sources can be loaded into the register.

Shift Register A shift register accepts and/or transfers information serially. Consid-
er, for example, Figure B.31, which shows a 5-bit shift register constructed from clocked
D flip-flops. Data are input only to the leftmost flip-flop. With each clock pulse, data are
shifted to the right one position, and the rightmost bit is transferred out.

Data lines
D18 D17 D16 D15 D14 D13 D12 D11

D Q D Q D Q D Q p Ol P Q D Q D Q

> Clk [>m1 [>m1 Jr>cn‘ [>cu; J—>cm‘| 1»}0& [7>Clk
DO8 DO7 D06 DOs Do4 D03 D02 DO1
VN/

Output lines
Figure B.30 8-Bit Parallel Register

Serial In D Q D Q D Q D Q D Q Serial Out

> Cik > Clk > CIk > ik > Cik

Clock
Figure B.31 5-Bit Shift Register

734 APPENDIX B / DIGITAL LOGIC

A B C JaKalJb Kb Jc Kc
0 0 0j0d 0 d 1 d
0 0 1{0d 1t dd I
01 0|0 dd 0 1 d
(a) Truth table 0O 1 11 dd 1 d 1
1 0 0j/d 0 0 d 1 d
1 0 1|d 01 dd 1
1 1 0{d 0do 1 d
11 1fd1 d 1 di
(b) Karnaugh maps BC BC
® o 1 10 00 01 11 10
° m 0 d | d /a\ d
fa=BC A Ka=BC A
1 d|d W d 1 w

10 00 01 11 10

Jc

I
>
g
(=9
[=%
|
Z
"
——
o
[=%
\Z_|

(c) Logic diagram ﬁ
High J C J B / — J Ar
r> Ck > Ck > Ck
K Cl—| K Bl— K A
Clock

Figure B.33 Design of a Synchronous Counter

In this form, the table provides the value of the next output when the inputs and the
present output are known. This is exactly the information needed to design the
counter or, indeed, any sequential circuit. In this form, the table is referred to as an
excitation table.

Let us return to Figure B.33a. Consider the first row. We want the value of A
to remain 0, the value of B to remain 0, and the value of C to go from 0 to 1 with

